Speeding up the Inference in Gaussian Process Models

نویسندگان

  • Jarno Vanhatalo
  • Neil Lawrence
  • Jouko Lampinen
  • Aki Vehtari
چکیده

OF DOCTORAL DISSERTATION AALTO UNIVERSITY SCHOOL OF SCIENCE AND TECHNOLOGY P.O. BOX 11000, FI-00076 AALTO http://www.aalto.fi Author Jarno Vanhatalo Name of the dissertation Manuscript submitted 15.6.2010 Manuscript revised 9.9.2010 Date of the defence 19.10.2010 Article dissertation (summary + original articles) Monograph Faculty Department Field of research Opponent(s) Supervisor Instructor Abstract

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding up the binary Gaussian process classification

Gaussian processes (GP) are attractive building blocks for many probabilistic models. Their drawbacks, however, are the rapidly increasing inference time and memory requirement alongside increasing data. The problem can be alleviated with compactly supported (CS) covariance functions, which produce sparse covariance matrices that are fast in computations and cheap to store. CS functions have pr...

متن کامل

Properties of Spatial Cox Process Models

Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Evaluation of moving bed biofilm reactor (MBBR) by applying adaptive neuro-fuzzy inference systeme (ANFIS), radial basis function (RBF) and Fuzzy Regression Analysis

The purpose of this study is to investigate the accuracy of predictions of aniline removal efficiency in a moving bed biofilm reactor (MBBR) by various methods, namely by RBF, ANFIS, and fuzzy regression analysis. The reactor was operated in an aerobic batch and was filled by light expanded clay aggregate (LECA) as a carrier for the treatment of Aniline synthetic wastewater. Exploratory data an...

متن کامل

Speeding Up Inference in Statistical Relational Learning by Clustering Similar Query Literals

Markov logic networks (MLNs) have been successfully applied to several challenging problems by taking a “programming language” approach where a set of formulas is hand-coded and weights are learned from data. Because inference plays an important role in this process, “programming” with an MLN would be significantly facilitated by speeding up inference. We present a new meta-inference algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010